Abstract

This paper proposes a low-cost and sensitive surface electromyography (sEMG) sensor for the myoelectric prosthesis. The sensor consists of a skin interface, signal conditioning circuitry and power supply unit all encased in a single package. The tuned RC parameters based envelope detection scheme employed in the sensor enables faster as well as reliable recognition of EMG signal patterns regardless of its strength and subject variability. The output performance of the developed sensor was compared with a commercial EMG sensor regarding signal-to-noise ratio (SNR), amplitude sensitivity and response time. EMG signals with both the devices were acquired for 10 subjects (three amputees and seven healthy subjects), to perform this comparative analysis. The results showed 4× greater SNR values and 50% higher sensitivity of the developed sensor than the commercial EMG sensor. Also, the proposed sensor was 57% faster than the commercial sensor in producing the output response. The sensor was successfully tested on amputees for controlling a 3D printed hand prototype utilising a proportional control strategy. The enhanced output parameters of the sensor were responsible for smooth, faster and intuitive actuation of the prosthetic hand fingers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.