Abstract

Microscale flow-through electroporation at DC voltage has advantages in delivering small molecules. Yet, electroporation based on constant voltage are liable to generate electrolysis products which limits the voltage-operating window. Parallel on-chip 3D electrodes with close and uniform spacing are required to cut down voltage as well as provide enough electric field for electroporation. Here we present a simple electrode fabrication method based on capillary restriction valves in Z-axis to achieve parallel 3D electrodes with controllable electrode spacing in PDMS chips. With electrodes accurately placed in close range, a low voltage of only 1.5 V can generate enough electric field (>400 V/cm) to make cell membrane permeable. Squeeze flow is introduced to produce higher electric field (>800 V/cm) at a fixed voltage for more efficient electroporation. Benefit from the electrode fabrication method and application of squeeze flow, we develop a smartphone controlled microfluidic electroporation system which integrate functions of sample injection, pressure regulating, real-time observation and constant DC power supply. The system is used to electroporate two cell lines, showing a permeabilization percentage of 63% for HEK-293 cells and 58% for CHO-K1 cells with optimal parameters. Thus, the portable microfluidic system provides a cost-effective and user-friendly flow-through cell electroporation platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.