Abstract

A low-cost, open-source peer-to-peer (P2P) energy trading system for a remote community is presented in this paper. As a result of its geographic location, this community has never been able to access electricity and other modern amenities. This study aims to design and implement a P2P energy trading system for this remote community that allows residents to take advantage of distributed energy resources. A Raspberry Pi 4 Model B (Pi4B) hosts the main server of the trading system that includes the user interface and a local Ethereum blockchain server. The Ethereum blockchain is used to deploy smart contracts. The Internet-of-Things (IoT) servers run on ESP32 microcontrollers. Sensors and actuators connected to the ESP32 are field instrumentation devices that facilitate acquiring, monitoring, and transferring energy data in real-time. To perform trading activities, React.JS open-source library was used to develop the blockchain-enabled user interface. An immutable blockchain network keeps track of all transactions. The proposed system runs on a local Wi-Fi network with restricted authorization for system security. Other security measures such as login credentials, private key, firewall, and secret recovery phrases are also considered for information security and data integrity. A Hypertext Transfer Protocol is implemented for communication between the servers and the client. This explains the overall system design, implementation, testing, and results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.