Abstract

In the present paper, a supersonic wind-tunnel is designed to maintain a flow with Mach number of 3 in a 30cm×30cm test section. An in-house CFD code is developed using the Roe scheme to simulate flow-field and detect location of normal shock in the supersonic wind-tunnel. In the Roe scheme, flow conditions at inner and outer sides of cell faces are determined using an upwind biased algorithm. The in-house CFD code has been parallelized using OpenMp to reduce the computational time. Also, an appropriate equation is derived to predict the optimum number of cores for running the program with different grid sizes. In the design process of the wind-tunnel, firstly geometry of the nozzle is specified by the method of characteristics. The flow in the nozzle and test section is simulated in the next step. Then, design parameters of the diffuser (convergence and divergence angles, area of the throat, and ratio of the exit area to the throat area) are determined by a trial and error method. Finally, an appropriate geometry is selected for the diffuser which satisfies all necessary criteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.