Abstract

BackgroundBrain temperature is a strong determinant of ischemic stroke injury. For this reason, tight management of brain or body temperature (Tcore) in experimental rodent stroke models is recommended to improve the rigor and reproducibility of outcomes. However, methods for managing Tcore during and after stroke vary widely in approach and effectiveness. New MethodWe developed a low-cost warm ambient air cage (WAAC) system to provide improved temperature control during the intra-ischemic and post-ischemic recovery periods. The system is incorporated into standard holding cages for maintaining Tcore during the intra-ischemic period as well as for several hours into the recovery period. Results and Comparison with Existing MethodsWe compared the WAAC system with a commonly used heat support method, consisting of a cage on a heating pad. Both heat support systems were evaluated for the middle cerebral artery occlusion (MCAo) stroke model in mice. The WAAC system provided improved temperature control (more normothermic Tcore and less Tcore variation) during the intra- ischemic period (60 min) and post-ischemic period (3 h). Mean infarct volume was not statistically different by heat support system, however, standard deviation was 54 % lower in the WAAC system group. ConclusionsMice and other small rodents are highly vulnerable to heat loss during and after the MCAo procedure. The WAAC system provides more precise and controlled Tcore maintenance compared with frequently used induction heating methods in mice undergoing the MCAo stroke model. The improved temperature control should enhance experimental rigor and reduce the number of experimental animals needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call