Abstract

This paper deals with the development of a microwave noise-adding radiometer, which is purposely designed for the fire detection in forest environments. The sensor operates at 12.65 GHz and exploits commercial Satellite Television (SAT-TV) components such as a parabolic dish and a low-noise block. First, a simple system model is presented to estimate the radiometric contrast due to the presence of fire (increase in the antenna noise temperature with respect to the background) at a certain distance from the receiving antenna. Then, the design of the sensor is addressed, underlining the key technologies that allow the required performance to be attained at low industrial costs. An experimental characterization of the developed radiometer is reported focusing on both accuracy and sensitivity issues. Due to a continuous gain calibration based on the noise-adding procedure, the antenna noise temperature can be retrieved with an absolute error of 4 K without any thermal stabilization of the instrument electronics. Last, real fire detection experiments have been carried out both in laboratory and open-space environments. A radiometric contrast of 8.8 K has been recorded for a wooden fire of 0.2 placed at a distance of about 30 m from the antenna.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.