Abstract
Current battery systems have severe cost and resource restrictions, difficultly to meet the large scale electric storage applications. Herein, we report an all-organic Na-ion battery using p-dopable polytriphenylamine as cathode and n-type redox-active poly(anthraquinonyl sulphide) as anode, excluding the use of transition-metals as in conventional electrochemical batteries. Such a Na-ion battery can work well with a voltage output of 1.8 V and realize a considerable specific energy of 92 Wh kg−1. Due to the structural flexibility and stability of the redox-active polymers, this battery has a superior rate capability with 60% capacity released at a very high rate of 16 C (3200 mA g−1) and also exhibit an excellent cycling stability with 85% capacity retention after 500 cycles at 8 C rate. Most significantly, this type of all-organic batteries could be made from renewable and earth-abundant materials, thus offering a new possibility for widespread energy storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.