Abstract

BackgroundRoot and tuber crops are becoming more important for their high source of carbohydrates, next to cereals. Despite their commercial impact, there are significant knowledge gaps about the environmental and inherent regulation of storage root (SR) differentiation, due in part to the innate problems of studying storage roots and the lack of a suitable model system for monitoring storage root growth. The research presented here aimed to develop a reliable, low-cost effective system that enables the study of the factors influencing cassava storage root initiation and development.ResultsWe explored simple, low-cost systems for the study of storage root biology. An aeroponics system described here is ideal for real-time monitoring of storage root development (SRD), and this was further validated using hormone studies. Our aeroponics-based auxin studies revealed that storage root initiation and development are adaptive responses, which are significantly enhanced by the exogenous auxin supply. Field and histological experiments were also conducted to confirm the auxin effect found in the aeroponics system. We also developed a simple digital imaging platform to quantify storage root growth and development traits. Correlation analysis confirmed that image-based estimation can be a surrogate for manual root phenotyping for several key traits.ConclusionsThe aeroponic system developed from this study is an effective tool for examining the root architecture of cassava during early SRD. The aeroponic system also provided novel insights into storage root formation by activating the auxin-dependent proliferation of secondary xylem parenchyma cells to induce the initial root thickening and bulking. The developed system can be of direct benefit to molecular biologists, breeders, and physiologists, allowing them to screen germplasm for root traits that correlate with improved economic traits.

Highlights

  • Root and tuber crops are becoming more important for their high source of carbohydrates, next to cereals

  • The in vitro plants were transferred to the greenhouse for hardening using nutrient solution enriched with ­NO3− (Additional file 1: Table S1), and after 20 days the plants were transferred to the respective model systems with a solution enriched with ­NH4NO3 (Additional file 1: Table S1)

  • Our results revealed that the aeroponic mist system positively affected the development of the storage roots compared to other systems, showing significant positive differences compared to the other systems in variables such as storage root dry weight and root thickness (Fig. 2c, d)

Read more

Summary

Introduction

Root and tuber crops are becoming more important for their high source of carbohydrates, next to cereals. Despite their commercial impact, there are significant knowledge gaps about the environmental and inherent regulation of storage root (SR) differentiation, due in part to the innate problems of studying storage roots and the lack of a suitable model system for monitoring storage root growth. Early bulking is considered to have high potential to change cassava from the traditional ‘household food crop’ to an ‘industrial crop’ and has become an important objective for the national cassava breeding programs in Africa and worldwide [7]. There is an increasing number of published studies on the genetic, molecular and physiological regulation of root architecture as related to plant nutrient efficiency [11]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.