Abstract

Pedestrian detection is a key problem in computer vision and is currently addressed with increasingly complex solutions involving compute-intensive features and classification schemes. In this scope, histogram of oriented gradients (HOG) in conjunction with linear support vector machine (SVM) classifier is considered to be the single most discriminative feature that has been adopted as a stand-alone detector as well as a key instrument in advance systems involving hybrid features and cascaded detectors. In this paper, we propose a pedestrian detection framework that is computationally less expensive as well as more accurate than HOG-linear SVM. The proposed scheme exploits the discriminating power of the locally significant gradients in building orientation histograms without involving complex floating point operations while computing the feature. The integer-only feature allows the use of powerful histogram inter-section kernel SVM classifier in a fast lookup-table-based implementation. Resultantly, the proposed framework achieves at least 3% more accurate detection results than HOG on standard data sets while being 1.8 and 2.6 times faster on conventional desktop PC and embedded ARM platforms, respectively, for a single scale pedestrian detection on VGA resolution video. In addition, hardware implementation on Altera Cyclone IV field-programmable gate array results in more than 40% savings in logic resources compared with its HOG-linear SVM competitor. Hence, the proposed feature and classification setup is shown to be a better candidate as the single most discriminative pedestrian detector than the currently accepted HOG-linear SVM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call