Abstract

Achieving high spectral efficiency in realistic massive multiple-input multiple-output (M-MIMO) systems entail a significant increase in implementation complexity, especially with respect to data detection. Linear minimum mean-squared error (LMMSE) can achieve near-optimal performance but involves computationally expensive large-scale matrix inversions. This paper proposes a novel computationally efficient data detection algorithm based on the modified Richardson method. We first propose an antenna-dependent approach for the robust initialization of the Richardson method. It is shown that the proposed initializer outperforms the existing initialization schemes by a large margin. Then, the Chebyshev acceleration technique is proposed to overcome the sensitivity of the Richardson method to relaxation parameter while simultaneously enhancing its convergence rate. We demonstrate that the proposed algorithm mitigates multiuser interference and offers significant performance gains via the iterative cancellation of the bias term by prior estimation. Hence, each step of the iteration routine gives a new and better estimate of the solution. An asymptotic expression for the average convergence rate is also derived in this paper. The numerical results show that the proposed algorithm outperforms the existing methods and achieves near-LMMSE performance with a significantly reduced computational complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.