Abstract

The objective of utilizing mmWave/subTHz bands in next-generation wireless communications is to be achieved. Despite this, since reconfigurable intelligent surface (RIS)-assisted systems depend on the transmission channel configuration, the system architecture design, and the methods used to derive channel state information (CSI) on a base station (BS) and RIS, channel estimation continues to be the main problem with these systems. This research proposes an innovative RIS-based and compressed sensing-based channel estimation technique for the internet of vehicles. To obtain the best phase shift matrix, the communication model must first be constructed, and the angle-of-arrival and departure are utilized. Channel estimation is then performed based on the perception matrix. The training overhead and complexity of the channel estimation are reduced by considering the position information of the vehicles in the optimal phase shift matrix. Simulation results show that the proposed algorithm exhibits better channel estimation and low complexity performance compared with existing algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.