Abstract

SummaryThis paper proposes a new, low‐communication algorithm for solving PDEs on massively parallel computers. The range decomposition (RD) algorithm exposes coarse‐grain parallelism by applying nested iteration and adaptive mesh refinement locally before performing a global communication step. Just a few such steps are observed to be sufficient to obtain accuracy within a small multiple of discretization error. The target applications are petascale and exascale machines, where hierarchical parallelism is required and traditional parallel numerical PDE communication patterns are costly because of message latency. The RD algorithm uses a partition of unity to equally distribute the error, and thus, the work. The computational advantages of this approach are that the decomposed problems can be solved in parallel without any communication until the partitioned solutions are summed. This offers potential advantages in the paradigm of expensive communication but very cheap computation. This paper introduces the method and explains the details of the communication step. Two performance models are developed, showing that the latency cost associated with a traditional parallel implementation of nested iteration is proportional to log(P)2, whereas the RD method reduces the communication latency to log(P), while maintaining similar bandwidth costs. Numerical results for two problems, Laplace and advection diffusion, demonstrate the enhanced performance, and a heuristic argument explains why the method converges quickly. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.