Abstract
A new inter-processor communication architecture for chip multiprocessors is proposed which has a low area cost, flexible routing capability, and supports globally asynchronous locally synchronous (GALS) clocking styles. To achieve a low area cost, the proposed statically-configurable asymmetric architecture assigns large buffer resources to only the nearest neighbor interconnect and much smaller buffer resources for long distance interconnect. To maintain flexible routing capability, each neighboring processor pair has multiple connecting links. The architecture supports long distance communication in GALS systems by transferring the source clock with the data signals along the entire path for write synchronization. Compared to a traditional dynamically-configurable interconnect architecture with symmetric buffer allocation and single-links between neighboring processor pairs, this implementation has approximately two times smaller communication circuitry area with a similar routing capability. Area and speed estimates are obtained with the physical design of seven chips in 0.18-¿m CMOS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.