Abstract

Light perception is indispensable for plants to respond adequately to external cues and is linked to proteolysis of key transcriptional regulators. To provide synthetic light control of protein stability, we developed a generic photosensitive degron (psd) module combining the light-reactive LOV2 domain of Arabidopsis thaliana phot1 with the murine ornithine decarboxylase-like degradation sequence cODC1. Functionality of the psd module was demonstrated in the model organism Saccharomyces cerevisiae. Generation of conditional mutants, light regulation of cyclin-dependent kinase activity, light-based patterning of cell growth, and yeast photography exemplified its versatility. In silico modeling of psd module behavior increased understanding of its characteristics. This engineered degron module transfers the principle of light-regulated degradation to nonplant organisms. It will be highly beneficial to control protein levels in biotechnological or biomedical applications and offers the potential to render a plethora of biological processes light-switchable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.