Abstract

This article describes a model of loudness for time-varying sounds that incorporates the concept of binaural inhibition, namely, that the signal applied to one ear can reduce the internal response to a signal at the other ear. For each ear, the model includes the following: a filter to allow for the effects of transfer of sound through the outer and middle ear; a short-term spectral analysis with greater frequency resolution at low than at high frequencies; calculation of an excitation pattern, representing the magnitudes of the outputs of the auditory filters as a function of center frequency; application of a compressive nonlinearity to the output of each auditory filter; and smoothing over time of the resulting instantaneous specific loudness pattern using an averaging process resembling an automatic gain control. The resulting short-term specific loudness patterns are used to calculate broadly tuned binaural inhibition functions, the amount of inhibition depending on the relative short-term specific loudness at the two ears. The inhibited specific loudness patterns are summed across frequency to give an estimate of the short-term loudness for each ear. The overall short-term loudness is calculated as the sum of the short-term loudness values for the two ears. The long-term loudness for each ear is calculated by smoothing the short-term loudness for that ear, again by a process resembling automatic gain control, and the overall loudness impression is obtained by summing the long-term loudness across ears. The predictions of the model are more accurate than those of an earlier model that did not incorporate binaural inhibition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call