Abstract

Increase of size and bandwidth of computer network posed a research challenge to evaluate proposed TCP/IP protocol and corresponding queuing policies in this scenario. Simulation provides an easier and cheaper method to evaluate TCP proposals and queuing disciplines as compared to experiment with real hardware. In this paper, problem associated with scalability of current simulation method for high-speed network case is discussed. Hence, we present a scalable time-adaptive numerical simulation driven by loss events to represent dynamics of high-speed networks using fluid-based models. The new method uses a loss event to dynamically adjust the size of a time step for a numerical solver which solves a system of differential equations representing dynamics of protocols and nodes’ behaviors. A numerical analysis of the proposed protocol is discussed. A simple simulation of high-speed TCP variants is presented using our method. The simulation results and analysis show that the time-adaptive method reduces computational time while achieving the same accuracy compared to that of a fixed step-size method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.