Abstract

Abstract We prove an effective version of the Lopez-Escobar theorem for continuous domains. Let $Mod(\tau )$ be the set of countable structures with universe $\omega $ in vocabulary $\tau $ topologized by the Scott topology. We show that an invariant set $X\subseteq Mod(\tau )$ is $\Pi ^0_\alpha $ in the Borel hierarchy of this topology if and only if it is definable by a $\Pi ^p_\alpha $ -formula, a positive $\Pi ^0_\alpha $ formula in the infinitary logic $L_{\omega _1\omega }$ . As a corollary of this result we obtain a new pullback theorem for positive computable embeddings: Let $\mathcal {K}$ be positively computably embeddable in $\mathcal {K}'$ by $\Phi $ , then for every $\Pi ^p_\alpha $ formula $\xi $ in the vocabulary of $\mathcal {K}'$ there is a $\Pi ^p_\alpha $ formula $\xi ^{*}$ in the vocabulary of $\mathcal {K}$ such that for all $\mathcal {A}\in \mathcal {K}$ , $\mathcal {A}\models \xi ^{*}$ if and only if $\Phi (\mathcal {A})\models \xi $ . We use this to obtain new results on the possibility of positive computable embeddings into the class of linear orderings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call