Abstract

This paper describes a novel loop-structured switching network (LSSN) intended for highly parallel processing architectures. With L loops, it can connect up to N = L* log2 L pairs of transmitting and receiving devices using only N/2 two-by-two switching elements; thus, it is very cost-effective in terms of its component count. Its topology resembles that of the indirect binary n-cube network, but a much higher device-to-switch ratio is achieved because all the links between the switches could be used as both transmitting and receiving stations. It has the advantage of incremental extensibility, and-it could avoid store-and-forward deadlocks (SFD) which prevail in other recirculating packet-switched networks. Our simulation studies show that the average throughput rate and delay of LSSN are close to that of other designs despite its relatively low component count.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.