Abstract

We are making accurate observations of the change in Doppler shift of stellar absorption lines. The purpose is to detect the oscillatory reflex motion due to planets orbiting stars. The scrambling of incident light by an optical fiber and the stability of wavelength calibration by a Fabry-Perot etalon provide immunity to systematic errors. Select- ing several echelle diffraction orders in the vicinity of 4250–4600 A, which are imaged on a CCD, about 350 points on the profile of the stellar spectrum are sampled by successive orders of interferometric transmission through the etalon. At 4300 A each interference order is 47 milliangstroms wide and the sample points are 0.64 A apart, causing distinct, widely-spaced monochromatic images of the entrance aperture to be formed in the focal plane of the camera. Changes in Doppler shift modify the relative intensities of these images, according to the slope of the spectral profile at each point sampled. To simplify operation and enhance sensitivity, the instrument is being operated as a null-measurement accelerometer, responding only to changes in radial velocity. With an argon emission line lamp the interferometer is calibrated to two parts in 100 million; this corresponds to ± 6 meters/sec in Doppler shift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.