Abstract
BackgroundStudies of Caucasian patients with rheumatoid arthritis (RA) to identify genetic biomarkers of anti-tumor necrosis factor (TNF) response have used response at a single time point as the phenotype with which single nucleotide polymorphism (SNP) associations have been tested. The findings have been inconsistent across studies. Among Japanese patients, only a few SNPs have been investigated. We report here the first genome-wide association study (GWAS) to identify genetic biomarkers of anti-TNF response among Japanese RA patients, using response at 2 time-points for a more reliable clinical phenotype over time.MethodsDisease Activity Scores based on 28 joint counts (DAS28) were assessed at baseline (before initial therapy), and after 3 and 6 months in 487 Japanese RA patients starting anti-TNF therapy for the first time or switching to a new anti-TNF agent. A genome-wide panel of SNPs was genotyped and additional SNPs were imputed. Using change in DAS28 scores from baseline at both 3 (ΔDAS-3) and 6 months (ΔDAS-6) as the response phenotype, a longitudinal genome-wide association analysis was conducted using generalized estimating equations (GEE) models, adjusting for baseline DAS28, treatment duration, type of anti-TNF agent and concomitant methotrexate. Cross-sectional analyses were performed using multivariate linear regression models, with response from a single time point (ΔDAS-3 or ΔDAS-6) as phenotype; all other variables were the same as in the GEE models.ResultsIn the GEE models, borderline significant association was observed at 3 chromosomal regions (6q15: rs284515, p = 6.6x10−7; 6q27: rs75908454, p = 6.3x10−7 and 10q25.3: rs1679568, p = 8.1x10−7), extending to numerous SNPs in linkage disequilibrium (LD) across each region. Potential candidate genes in these regions include MAP3K7, BACH2 (6q15), GFRA1 (10q25.3), and WDR27 (6q27). The association at GFRA1 replicates a previous finding from a Caucasian dataset. In the cross-sectional analyses, ΔDAS-6 was significantly associated with the 6q15 locus (rs284511, p = 2.5x10−8). No other significant or borderline significant associations were identified.ConclusionThree genomic regions demonstrated significant or borderline significant associations with anti-TNF response in our dataset of Japanese RA patients, including a locus previously associated among Caucasians. Using repeated measures of response as phenotype enhanced the power to detect these associations.Electronic supplementary materialThe online version of this article (doi:10.1186/s13075-016-0920-6) contains supplementary material, which is available to authorized users.
Highlights
Studies of Caucasian patients with rheumatoid arthritis (RA) to identify genetic biomarkers of anti-tumor necrosis factor (TNF) response have used response at a single time point as the phenotype with which single nucleotide polymorphism (SNP) associations have been tested
There have been no reports of genome-wide association studies (GWAS) for biomarkers of anti-TNF response among Japanese or other East Asian RA patients
Single nucleotide polymorphisms (SNPs) in the TRAF1 [24] and CD84 genes [18] have been examined for association in two small samples of 101 and 151 Japanese patients, respectively
Summary
Studies of Caucasian patients with rheumatoid arthritis (RA) to identify genetic biomarkers of anti-tumor necrosis factor (TNF) response have used response at a single time point as the phenotype with which single nucleotide polymorphism (SNP) associations have been tested. We report here the first genome-wide association study (GWAS) to identify genetic biomarkers of anti-TNF response among Japanese RA patients, using response at 2 time-points for a more reliable clinical phenotype over time. Single nucleotide polymorphisms (SNPs) in the TRAF1 [24] and CD84 genes [18] have been examined for association in two small samples of 101 and 151 Japanese patients, respectively It has been demonstrated for several RA risk loci that there are both similarities and ethnic differences in disease associations between Caucasian and Japanese populations [25,26,27,28,29]. Efficacy of anti-TNF therapies appears to be similar in these populations [30, 31], there may be similarities and differences in genetic predictors of anti-TNF response
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.