Abstract

The Kijima’s type 1 maintenance model, representing the general renewal process, is one of the most important in the reliability theory. The g-renewal equation is central in Kijima’s theory and it is a Volterra integral equation of the second kind. Although these equations are well-studied, a closed-form solution to the g-renewal equation has not yet been obtained. Despite the fact that several semi-empirical techniques to approximate the g-renewal function have been previously developed, analytical approaches to solve this equation for a wide class of underlying distributions is still of current interest. In this paper, a long-time asymptotic for the g-renewal rate is obtained for distributions with nondecreasing hazard functions and for all values of the restoration factor $$q\in [0,1]$$. The obtained analytical result is compared with the numerical solutions for two types of underlying distributions, showing a good asymptotic match. The obtained approximate g-renewal rate is employed for maintenance optimization, considering the repair cost as a function of the restoration factor. Several numerical examples are performed in order to show the efficiency of our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.