Abstract

The Kijima’s type 1 maintenance model, representing the general renewal process, is one of the most important in the reliability theory. The g-renewal equation is central in Kijima’s theory and it is a Volterra integral equation of the second kind. Although these equations are well-studied, a closed-form solution to the g-renewal equation has not yet been obtained. Despite the fact that several semi-empirical techniques to approximate the g-renewal function have been previously developed, analytical approaches to solve this equation for a wide class of underlying distributions is still of current interest. In this paper, a long-time asymptotic for the g-renewal rate is obtained for distributions with nondecreasing hazard functions and for all values of the restoration factor $$q\in [0,1]$$. The obtained analytical result is compared with the numerical solutions for two types of underlying distributions, showing a good asymptotic match. The obtained approximate g-renewal rate is employed for maintenance optimization, considering the repair cost as a function of the restoration factor. Several numerical examples are performed in order to show the efficiency of our results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call