Abstract
Although a pre-pregnancy dietary intervention is believed to be able to prevent offspring obesity, research evidence is absent. We hypothesize that a long period of pre-pregnancy maternal diet transition from a high-fat (HF) diet to a normal-fat (NF) diet effectively prevents offspring obesity, and this preventive effect is independent of maternal body weight change. In our study, female mice were either continued on an NF diet (NF group) or an HF diet (HF group) until weaning, or switched from an HF to an NF for 1 week (H1N group), 5 weeks (H5N group) or 9 weeks (H9N group) before pregnancy. After weaning, the offspring were given the HF diet for 12 weeks to promote obesity. The mothers, regardless of which group, did not display maternal body weight change and glucose intolerance either before pregnancy or after weaning. Compared to the HF group, the H1N and H5N, but not the H9N, offspring developed glucose intolerance earlier, with more severely imbalanced glucose homeostasis. These offspring also displayed hepatocyte degeneration and significant adipocyte hypertrophy associated with higher expression of lipogenesis genes. The molecular mechanistic study showed blunted insulin signaling, overactivated adipocyte Akt signaling and hepatic AMPK signaling with enhanced lipogenesis genes in the H1N and H5N versus the NF offspring. However, maternal H9N diets normalized glucose and lipid metabolism of the offspring via resensitized insulin signaling and normalized Akt and AMPK signaling. In summary, we showed that a long-term maternal diet intervention effectively released the intergenerational obesogenic effect of maternal HF diet independent of maternal weight management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.