Abstract

Polybia spinifex Richards (Hymenoptera: Vespidae) constructs mud nests characterized by a long slit-like entrance. The ventilation and thermal characteristics of the P. spinifex nest were investigated to determine whether the nest microclimate is automatically maintained due to the size of the entrance. In order to examine this hypothesis, a numerical simulation was employed to predict the effects of the entrance length. The calculations were performed with 3D-virtual models that simulated the P. spinifex nest conditions, and the reliability of the simulations was experimentally examined by using gypsum-model nests and a P. spinifex nest. The ventilation effect was determined by blowing air through the nest at 1–3 m/s (airflow conditions); the airspeed was found to be higher in models with a longer entrance. The ventilation rate was also higher in models with longer entrances, suggesting that the P. spinifex nest is automatically ventilated by natural winds. Next, the thermal effect was calculated under condition of direct sunlight. Under a calm condition (airflow, 0 m/s), thermal convection and a small temperature drop were observed in the case of models with a long entrance, whereas the ventilation and thermoregulation effects seemed small. Under airflow conditions, the temperature at the mid combs steeply dropped due to the convective airflow through the entrance at 1–2 m/s, and at 3 m/s, most of the heat was eliminated due to high thermal conductivity of the mud envelope, rather than convection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.