Abstract

Spike-based neuromorphic hardware holds promise for more energy-efficient implementations of deep neural networks (DNNs) than standard hardware such as GPUs. But this requires us to understand how DNNs can be emulated in an event-based sparse firing regime, as otherwise the energy advantage is lost. In particular, DNNs that solve sequence processing tasks typically employ long short-term memory units that are hard to emulate with few spikes. We show that a facet of many biological neurons, slow after-hyperpolarizing currents after each spike, provides an efficient solution. After-hyperpolarizing currents can easily be implemented in neuromorphic hardware that supports multi-compartment neuron models, such as Intel’s Loihi chip. Filter approximation theory explains why after-hyperpolarizing neurons can emulate the function of long short-term memory units. This yields a highly energy-efficient approach to time-series classification. Furthermore, it provides the basis for an energy-efficient implementation of an important class of large DNNs that extract relations between words and sentences in order to answer questions about the text. Deep learning could be less energy intensive when implemented on spike-based neuromorphic chips. An approach inspired by a characteristic feature of biological neurons, the presence of slowly changing internal currents, is developed to emulate long short-term memory units in a sparse spiking regime for neuromorphic implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call