Abstract

In this paper, the design and implementation process of an artificial neural network based predictor to forecast a day ahead of the power consumption of a building HVAC system is presented. The featured HVAC system is situated at MagicBox, a real self-sufficient solar house with a monitoring system. Day ahead prediction of HVAC power consumption will remarkably enhance the Demand Side Management techniques based on appliance scheduling to reach defined goals. Several multi step prediction models, based on LSTM neural networks, are proposed. In addition, suitable data preprocessing and arrangement techniques are set to adapt the raw dataset. Considering the targeted prediction horizon, the models provide outstanding results in terms of test errors (NRMSE of 0.13) and correlation, between the temporal behavior of the predictions and test time series to be forecasted, of 0.797. Moreover, these results are compared to the simplified one hour ahead prediction that reaches nearly optimal test NRMSE of 0.052 and Pearson correlation coefficient of 0.972. These results provide an encouraging perspective for real-time energy consumption prediction in buildings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call