Abstract

Multi-messenger observations of GW170817 have not conclusively established whether the merger remnant is a black hole (BH) or a neutron star (NS). We show that a long-lived magnetized NS with a poloidal field $B\approx 10^{12}$G is fully consistent with the electromagnetic dataset, when spin down losses are dominated by gravitational wave (GW) emission. The required ellipticity $\epsilon\gtrsim 10^{-5}$ can result from a toroidal magnetic field component much stronger than the poloidal component, a configuration expected from a NS newly formed from a merger. Abrupt magnetic dissipation of the toroidal component can lead to the appearance of X-ray flares, analogous to the one observed in gamma-ray burst (GRB) afterglows. In the X-ray afterglow of GW170817 we identify a low-significance ($\gtrsim 3\sigma$) temporal feature at 155 d, consistent with a sudden reactivation of the central NS. Energy injection from the NS spin down into the relativistic shock is negligible, and the underlying continuum is fully accounted for by a structured jet seen off-axis. Whereas radio and optical observations probe the interaction of this jet with the surrounding medium, observations at X-ray wavelengths, performed with adequate sampling, open a privileged window on to the merger remnant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.