Abstract

Oxygen isotope ratios and corresponding 26Al–26Mg isotope systematics of refractory inclusions from the least metamorphosed carbonaceous chondrites, Acfer 094 (C-ungrouped 3.00) and Yamato 81020 (CO3.05), were measured with an ion microprobe. Most of the samples are fine-grained refractory inclusions which are considered as condensates from high temperature solar nebular gas. The refractory inclusions consistently exhibit 16O-enriched signatures among their interior phases (spinel, melilite, and high-Ca pyroxene), as well as phases within their rim structures (spinel, high-Ca pyroxene, and adjacent anorthite). This observation indicates that aggregated refractory condensates and the formation of rim structures occurred in the same 16O-rich environment. Evidence for mass-dependent isotopic fractionation in oxygen and magnesium, which would indicate a later flash heating process, was not observed in rims. All oxygen isotope data from fine-grained CAIs are distributed between the Carbonaceous Chondrite Anhydrous Mineral (CCAM) line and the Primitive Chondrule Mineral (PCM) regression line based on oxygen isotope data from the Acfer 094 chondrules. The inferred initial 26Al/27Al ratios, (26Al/27Al)0, of spinel-melilite-rich CAIs are (4.08±0.75)×10−5 to (5.05±0.18)×10−5 (errors are 2σ), which are slightly lower than the canonical value of 5.25×10−5. As there is no petrologic evidence for re-melting after condensation, the lower (26Al/27Al)0 values of these CAIs indicate either they formed up to ∼0.3Ma after canonical CAIs or they formed before 26Al was homogeneously distributed in the solar nebula. A pyroxene-anorthite-rich CAI, G92, has an 16O-rich signature like other CAIs but also has an order-of-magnitude less 26Mg-excess in anorthite, corresponding to a (26Al/27Al)0 of (5.21±0.54)×10−6. As there is no evidence for a later Mg isotopic disturbance, G92 anorthite is interpreted to have formed by interaction with 16O-rich nebular gas at 2–3Ma after CAI formation. With the observation that 16O-rich refractory inclusions, relatively 16O-poor chondrules, and extremely 16O-poor cosmic symplectites within Acfer 094 all plot on the PCM line, it suggests that 16O-rich nebular gas and extremely 16O-poor primordial volatiles represent mass-independent fractionated endmembers in the early solar system and that the PCM line represents a mixing line of these two endmembers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.