Abstract

Aqueous zinc-ion batteries (ZIBs) have become the highest potential energy storage system for large-scale applications owing to the high specific capacity, good safety and low cost. In this work, a NASICON-type Na3 V2 (PO4 )3 cathode modified by a uniform carbon layer (NVP/C) has been synthesized via a facile solid-state method and exhibited significantly improved electrochemical performance when working in an aqueous ZIB. Specifically, the NVP/C cathode shows an excellent rate capacity (e. g., 48 mAh g-1 at 1.0 A g-1 ). Good cycle stability is also achieved (e. g., showing a capacity retention of 88% after 2000 cycles at 1.0 A g-1 ). Furthermore, the Zn2+ (de)intercalation mechanism in the NVP cathode has been determined by various ex-situ techniques. In addition, a Zn||NVP/C pouch cell has been assembled, delivering a high capacity of 89 mAhg-1 at 0.2 A g-1 and exhibiting a superior long cycling stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.