Abstract

Surgery avoidance is an important goal in Crohn’s disease (CD) treatment and predicting the risk of subsequent surgery is important to determine adequate therapeutic strength for patients with newly diagnosed CD. Herein, we aimed to construct a prediction model for the risk of subsequent surgery based on disease characteristics at the patients’ initial visit. We retrospectively collected disease characteristic data from 93 patients with newly diagnosed CD. A logistic regression model with a brute force method was used to maximize the area under the receiver operating characteristic curve (auROC) by employing a combination of potential predictors from 14 covariates (16,383). The auROC remained almost constant when one to 12 covariates were considered, reaching a peak of 0.89 at four covariates (small-bowel patency, extensive small-bowel lesions, main lesions, and the number of poor prognostic factors), and it decreased with increasing covariate size. The most significant predictors were small-bowel patency, extensive small-bowel lesions, and age or major lesions. Therefore, this prediction model using covariates may be helpful in determining the likelihood that a patient with newly diagnosed CD will require surgery, which can aid in appropriate treatment selection for high-risk patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.