Abstract
White mold, caused by Sclerotinia sclerotiorum, is the most important disease affecting dry bean production in North Dakota. This disease currently is managed mainly through fungicides applied during the flowering stage. A disease-forecasting model was developed to help growers with their decision to apply these fungicides. The model was built using weather variables collected during eight consecutive half-month periods between 1 May and 31 August 2003 to 2005 and white mold incidence data obtained from 150 fields. The model was produced using logistic regression analysis, and includes total rainfall, average minimum temperature, and number of rainy days in the first half of June, July, and August, respectively, as predictors and explained 85% of the variability. The model was validated using an independent disease data set collected from 100 fields during the same years. The model exhibited high true positive ratio (0.79) and very high accuracy (0.91) between observed and predicted probabilities of white mold incidence. Results from this study suggest that in-season macro-weather variables could be used to predict the risk of white mold, which in-turn could help growers make better-informed decisions on whether or not to apply fungicides for white mold control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.