Abstract

Graph polynomials are graph parameters invariant under graph isomorphisms which take values in a polynomial ring with a fixed finite number of indeterminates. We study graph polynomials from a model theoretic point of view. In this paper we distinguish between the graph theoretic (semantic) and the algebraic (syntactic) meaning of graph polynomials. Graph polynomials appear in the literature either as generating functions, as generalized chromatic polynomials, or as polynomials derived via determinants of adjacency or Laplacian matrices. We show that these forms are mutually incomparable, and propose a unified framework based on definability in Second Order Logic. We show that this comprises virtually all examples of graph polynomials with a fixed finite set of indeterminates. Finally we show that the location of zeros and stability of graph polynomials is not a semantic property. The paper emphasizes a model theoretic view. It gives a unified exposition of classical results in algebraic combinatorics together with new and some of our previously obtained results scattered in the graph theoretic literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.