Abstract
Case-based reasoning (CBR) has drawn considerable attention in artificial intelligence (AI) fields with many successful applications in systems such as e-commerce and multiagent systems. For the moment, research and development of CBR basically follows the traditional process model of CBR, i.e., the R4 model and problem space model introduced in 1994 and 1996, respectively. However, there has been no logical analysis for this popular CBR model. This article will fill this gap by providing a unified logical foundation for the CBR cycle. The proposed approach is based on an integration of traditional mathematical logic, fuzzy logic, and similarity-based reasoning. At the same time, we examine the CBR cycle from the knowledge-based (KB) viewpoint. The proposed logical approach can facilitate research and development of CBR. © 2003 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.