Abstract

Graphs are among the most frequently used structures in computer science. A lot of problems can be modelled using a graph and can then be solved by checking whether the graph satisfies some property. In this work, we are interested in how to use logical frameworks as a generic tool to express and efficiently check graph properties. In order to reason about this, we choose to analyze the Hamiltonian property and choose the family of modal logics as our framework. Our analysis has to deal with two central issues: whether each of the modal languages under consideration has enough expressive power to describe this property and how complex (computationally) it is to use these logics to actually test whether a given graph has this property. First, we show that this property is not definable in a basic modal logic or in any bisimulation-invariant extension of it, like the modal μ -calculus. We then show that it is possible to express it in a basic hybrid logic. Unfortunately, the Hamiltonian property still cannot be efficiently checked in this logic. In a second attempt, we extend this basic hybrid logic with the ↓ operator and show that we can check the Hamiltonian property with optimal (NP-Complete) complexity in this logic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.