Abstract
We study the notion of subtyping for session types in a logical setting, where session types are propositions of multiplicative/additive linear logic extended with least and greatest fixed points. The resulting subtyping relation admits a simple characterization that can be roughly spelled out as the following lapalissade: every session type is larger than the smallest session type and smaller than the largest session type. At the same time, we observe that this subtyping, unlike traditional ones, preserves termination in addition to the usual safety properties of sessions. We present a calculus of sessions that adopts this subtyping relation and we show that subtyping, while useful in practice, is superfluous in the theory: every use of subtyping can be "compiled away" via a coercion semantics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Proceedings in Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.