Abstract

We propose a logic synthesis methodology with a novel low-power circuit structure for ternary logic. The proposed methodology synthesizes a ternary function as a ternary logic gate using carbon nanotube field-effect transistors (CNTFETs). The circuit structure uses the body effect to mitigate the excessive power consumption for the third logic value. Energy-efficient ternary logic circuits are designed with a combination of synthesized low-power ternary logic gates. The proposed methodology is applicable to both unbalanced (0, 1, 2) and balanced (−1, 0, 1) ternary logic. To verify the improvement in energy efficiency, we have designed various ternary arithmetic logic circuits using the proposed methodology. The proposed ternary full adder has a significant improvement in the power-delay product (PDP) over previous designs. Ternary benchmark circuits have been designed to show that complex ternary functions can be designed to more efficient circuits with the proposed methodology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call