Abstract

A novel 4T2C ternary embedded DRAM (eDRAM) cell is proposed for computing a vector-matrix multiplication in the memory array. The proposed eDRAM-based compute-in-memory (CIM) architecture addresses a well-known Von Neumann bottle-neck in the traditional computer architecture and improves both latency and energy in processing neural networks. The proposed ternary eDRAM cell takes a smaller area than prior SRAM-based bitcells using 6-12 transistors. Nevertheless, the compact eDRAM cell stores a ternary state (-1, 0, or +1), while the SRAM bitcells can only store a binary state. We also present a method to mitigate the compute accuracy degradation issue due to device mismatches and variations. Besides, we extend the eDRAM cell retention time to 200μs by adding a custom metal capacitor at the storage node. With the improved retention time, the overall energy consumption of eDRAM macro, including a regular refresh operation, is lower than most of prior SRAM-based CIM macros. A 128×128 ternary eDRAM macro computes a vector-matrix multiplication between a vector with 64 binary inputs and a matrix with 64 × 128 ternary weights. Hence, 128 outputs are generated in parallel. Note that both weight and input bit-precisions are programmable for supporting a wide range of edge computing applications with different performance requirements. The bit-precisions are readily tunable by assigning a variable number of eDRAM cells per weight or adding multiple pulses to input. An embedded column ADC based on replica cells sweeps the reference level for 2 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</sup> -1 cycles and converts the analog accumulated bitline voltage to a 1-5bit digital output. A critical bitline accumulate operation is simulated (Monte-Carlo, 3K runs). It shows the standard deviation of 2.84% that could degrade the classification accuracy of the MNIST dataset by 0.6% and the CIFAR-10 dataset by 1.3% versus a baseline with no variation. The simulated energy is 1.81fJ/operation, and the energy efficiency is 552.5-17.8TOPS/W (for 1-5bit ADC) at 200MHz using 65nm technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.