Abstract

The presence of a few poor-quality mesh elements can negatively affect the stability and efficiency of a finite element solver and the accuracy of the associated partial differential equation solution. We propose a mesh quality improvement method that improves the quality of the worst elements. Mesh quality improvement of the worst elements can be formulated as a nonsmooth unconstrained optimization problem, which can be reformulated as a smooth constrained optimization problem. Our technique solves the latter problem using a log-barrier interior point method and uses the gradient of the objective function to efficiently converge to a stationary point. The technique can be used with convex or nonconvex quality metrics. The method uses a logarithmic barrier function and performs global mesh quality improvement. Our method usually yields better quality meshes than existing methods for improvement of the worst quality elements, such as the active set, pattern search, and multidirectional search mesh quality improvement methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call