Abstract

A smooth, proper family of curves creates a monodromy action of the fundamental group of the base on the H of a fibre. The geometric condition of T. Saito for the action of the wild inertia of a boundary point to be trivial is transformed to the condition of logarithmic smooth reduction. The proof emphasizes methods and results from logarithmic geometry. It applies to quasi–projective smooth curves with etale boundary divisor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.