Abstract
This article proposes a nonconforming immersed finite element (IFE) method for solving planar elasticity interface problems with structured (or Cartesian) meshes even if the material interface has a nontrivial geometry. IFE functions developed in this article are applicable to arbitrary configurations of elasticity materials and interface locations. Optimal approximation capability is observed for this new IFE space. The displacement Galerkin method based on this IFE space is robust (locking-free). Numerical experiments are presented to demonstrate that the IFE solution converges optimally for both compressible and nearly incompressible materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.