Abstract

AbstractIn this paper we propose and analyze a staggered discontinuous Galerkin method for a five-field formulation of the Biot system of poroelasticity on general polygonal meshes. Elasticity is equipped with a stress–displacement–rotation formulation with weak stress symmetry for arbitrary polynomial orders, which extends the piecewise constant approximation developed in Zhao and Park (2020, A staggered cell-centered DG method for linear elasticity on polygonal meshes, SIAM J. Sci. Comput.42, A2158–A2181). The proposed method is locking-free and can handle highly distorted grids, possibly including hanging nodes, which is desirable for practical applications. We prove the convergence estimates for the semidiscrete scheme and fully discrete scheme for all the variables in their natural norms. In particular, the stability and convergence analyses do not need a uniformly positive storativity coefficient. Moreover, to reduce the size of the global system, we propose a five-field-formulation-based fixed stress splitting scheme, where the linear convergence of the scheme is proved. Several numerical experiments are carried out to confirm the optimal convergence rates and the locking-free property of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.