Abstract
The automatic exudate segmentation in colour retinal fundus images is an important task in computer aided diagnosis and screening systems for diabetic retinopathy. In this paper, we present a location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images, which includes three stages: anatomic structure removal, exudate location and exudate segmentation. In anatomic structure removal stage, matched filters based main vessels segmentation method and a saliency based optic disk segmentation method are proposed. The main vessel and optic disk are then removed to eliminate the adverse affects that they bring to the second stage. In the location stage, we learn a random forest classifier to classify patches into two classes: exudate patches and exudate-free patches, in which the histograms of completed local binary patterns are extracted to describe the texture structures of the patches. Finally, the local variance, the size prior about the exudate regions and the local contrast prior are used to segment the exudate regions out from patches which are classified as exudate patches in the location stage. We evaluate our method both at exudate-level and image-level. For exudate-level evaluation, we test our method on e-ophtha EX dataset, which provides pixel level annotation from the specialists. The experimental results show that our method achieves 76% in sensitivity and 75% in positive prediction value (PPV), which both outperform the state of the art methods significantly. For image-level evaluation, we test our method on DiaRetDB1, and achieve competitive performance compared to the state of the art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.