Abstract

Human skin can sense an external object in a location-specific manner, simultaneously recognizing whether it is sharp or blunt. Such tactile capability can be achieved in both natural and stretched states. It is impractical to mimic this tactile function of human skin by designing pixelated sensor arrays across our whole curvilinear human body. Here, we report a new tactile electronic skin sensor based on staircase-like vertically aligned gold nanowires (V-AuNWs). With a back-to-back linear or spiral assembly of two staircase structures into a single sensor, we are able to recognize pressure in a highly location-specific manner for both non-stretched and stretched states (up to 50% strain); with a concentric design on the fingertip, we can identify the sharpness of an external object. We believe that our strategy opens up a new route to highly specific second-skin-like tactile sensors for electronic skin (E-skin) applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call