Abstract
A time domain method is presented for analyzing simultaneous measurements of pressure and the horizontal components of velocity obtained beneath irregular multidirectional wave fields. This new method differs from the usual linear directional analyses applied to PUV data in two important aspects. First, the essential nonlinearity of the measured waves is not sacrificed to achieve a solution. Therefore, predictions of sea surface elevation and directional kinematics throughout the water column accurately portray the actual nonlinear character of the waves. Second, the analysis method is `local' in that it can be applied to segments of PUV time series much shorter than an individual wave. The viability of the locally nonlinear methodology developed in this paper is proven by demonstrating agreement with higher-order theoretical steady waves. Predictions of sea surface elevation and wave kinematics are also made using actual measurements from PUV instruments at two ocean sites off the west coast of the United States.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.