Abstract

An approximation method of Moore for Kelvin–Helmholtz instability is formulated as a general method for two-dimensional, incompressible, inviscid flows generated by a vortex sheet. In this method the nonlocal equations describing evolution of the sheet are approximated by a system of (local) differential equations. These equations are useful for predicting singularity formation on the sheet and for analyzing the initial value problem before singularity formation. The general method is applied to a number of problems: Kelvin–Helmholtz instability for periodic vortex sheets, motion of an interface in Hele–Shaw flow, Rayleigh–Taylor instability for stratified flow, and Krasny’s desingularized vortex sheet equation. A new physically desingularized vortex sheet equation is proposed, which agrees with the finite thickness vortex layer equations in the localized approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.