Abstract

The method of approximate particular solutions (MAPS) has been recently developed to solve various types of partial differential equations. In the MAPS, radial basis functions play an important role in approximating the forcing term. Coupled with the concept of particular solutions and radial basis functions, a simple and effective numerical method for solving a large class of partial differential equations can be achieved. One of the difficulties of globally applying MAPS is that this method results in a large dense matrix which in turn severely restricts the number of interpolation points, thereby affecting our ability to solve large-scale science and engineering problems. In this paper we develop a localized scheme for the method of approximate particular solutions (LMAPS). The new localized approach allows the use of a small neighborhood of points to find the approximate solution of the given partial differential equation. In this paper, this local numerical scheme is used for solving large-scale problems, up to one million interpolation points. Three numerical examples in two-dimensions are used to validate the proposed numerical scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.