Abstract

A method for Bayesian reconstruction which relies on updates of single pixel values, rather than the entire image, at each iteration is presented. The technique is similar to Gauss-Seidel (GS) iteration for the solution of differential equations on finite grids. The computational cost per iteration of the GS approach is found to be approximately equal to that of gradient methods. For continuously valued images, GS is found to have significantly better convergence at modes representing high spatial frequencies. In addition, GS is well suited to segmentation when the image is constrained to be discretely valued. It is shown that Bayesian segmentation using GS iteration produces useful estimates at much lower signal-to-noise ratios than required for continuously valued reconstruction. The convergence properties of gradient ascent and GS for reconstruction from integral projections are analyzed, and simulations of both maximum-likelihood and maximum a posteriori cases are included. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.