Abstract

This paper presents systems for first-order intuitionistic logic and several of its extensions in which all the propositional rules are local, in the sense that, in applying the rules of the system, one needs only a fixed amount of information about the logical expressions involved. The main source of non-locality is the contraction rules. We show that the contraction rules can be restricted to the atomic ones, provided we employ deep-inference, i.e., to allow rules to apply anywhere inside logical expressions. We further show that the use of deep inference allows for modular extensions of intuitionistic logic to Dummett's intermediate logic LC, Godel logic and classical logic. We present the systems in the calculus of structures, a proof theoretic formalism which supports deep-inference. Cut elimination for these systems are proved indirectly by simulating the cut-free sequent systems, or the hypersequent systems in the cases of Dummett's LC and Godel logic, in the cut free systems in the calculus of structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.