Abstract

Computational cardiac models provide important insights into the underlying mechanisms of heart function. Parameter estimation in these models is an ongoing challenge with many existing models being overparameterised. Sensitivity analysis presents a key tool for exploring the parameter identifiability. While existing methods provide insights into the significance of the parameters, they are unable to identify redundant parameters in an efficient manner. We present a new singular value decomposition based algorithm for determining parameter identifiability in cardiac models. Using this local sensitivity approach, we investigate the Ten Tusscher 2004 rapid inward rectifier potassium and the Mahajan 2008 rabbit L-type calcium currents in ventricular myocyte models. We identify non-significant and redundant parameters and improve the models by reducing them to minimum ones that are validated to have only identifiable parameters. The newly proposed approach provides a new method for model validation and evaluation of the predictive power of cardiac models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.