Abstract
Purpose– Kriging model has been widely adopted to reduce the high computational costs of simulations in Reliability-based design optimization (RBDO). To construct the Kriging model accurately and efficiently in the region of significance, a local sampling method with variable radius (LSVR) is proposed. The paper aims to discuss these issues.Design/methodology/approach– In LSVR, the sequential sampling points are mainly selected within the local region around the current design point. The size of the local region is adaptively defined according to the target reliability and the nonlinearity of the probabilistic constraint. Every probabilistic constraint has its own local region instead of all constraints sharing one local region. In the local sampling region, the points located on the constraint boundary and the points with high uncertainty are considered simultaneously.Findings– The computational capability of the proposed method is demonstrated using two mathematical problems, a reducer design and a box girder design of a super heavy machine tool. The comparison results show that the proposed method is very efficient and accurate.Originality/value– The main contribution of this paper lies in: a new local sampling region computational criterion is proposed for Kriging. The originality of this paper is using expected feasible function (EFF) criterion and the shortest distance to the existing sample points instead of the other types of sequential sampling criterion to deal with the low efficiency problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.