Abstract
Abstract Mean curvature flow of clusters of n-dimensional surfaces in ℝ n + k {\mathbb{R}^{n+k}} that meet in triples at equal angles along smooth edges and higher order junctions on lower-dimensional faces is a natural extension of classical mean curvature flow. We call such a flow a mean curvature flow with triple edges. We show that if a smooth mean curvature flow with triple edges is weakly close to a static union of three n-dimensional unit density half-planes, then it is smoothly close. Extending the regularity result to a class of integral Brakke flows, we show that this implies smooth short-time existence of the flow starting from an initial surface cluster that has triple edges, but no higher order junctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.